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Abstract— Precise manipulation that is generalizable across
scenes and objects remains a persistent challenge in robotics.
Current approaches for this task heavily depend on having
a significant number of training instances to handle objects
with pronounced visual and/or geometric part ambiguities. Our
work explores the grounding of fine-grained part descriptors
for precise manipulation in a zero-shot setting by utilizing web-
trained text-to-image diffusion-based generative models. We
tackle the problem by framing it as a dense semantic part
correspondence task. Our model returns a gripper pose for
manipulating a specific part, using as reference a user-defined
click from a source image of a visually different instance of the
same object. We require no manual grasping demonstrations
as we leverage the intrinsic object geometry and features.
Practical experiments in a real-world tabletop scenario validate
the efficacy of our approach, demonstrating its potential for
advancing semantic-aware robotics manipulation.
Web page: https://tsagkas.github.io/click2grasp

I. INTRODUCTION

Developing semantic-aware manipulation models, with the
ability to generalize across scenes and objects, remains an
open research challenge in robotics. While recent approaches
have predominantly concentrated on object-level manipula-
tion, emphasizing the use of language as a communication
interface between users and robots, little evidence supports
the efficacy of existing methods in achieving precise part-
level manipulation. This gap is particularly evident in settings
containing pronounced visual and/or geometric ambiguity,
such as distinguishing between the left and right arm of
a stuffed toy or discerning the front-left from the back-
right leg of a chair. This paper delves into a core aspect
of this challenge: zero-shot grounding of fine-grained part
descriptors for precise manipulation.

An attractive way of framing this problem involves defin-
ing the desired interaction area on a specific object category
within a source image, thus enabling subsequent reference
across various target instances of that object class in the
world. Visual cues offer distinct advantages over verbal
instructions as language may either lack the granularity to
describe precise interaction areas (Fig. 1) or when commu-
nication barriers exist [1]. The ability to generalize between
diverse source and target instances is important for enabling
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Fig. 1. Zero-shot localization heatmaps for identifying the left arm of
the target stuffed toy from a single click demonstration from the top left
source image. CLIP leads to higher activations in irrelevant areas when
querying with a natural language prompt, i.e., “left arm”. DINO achieves
high similarity scores for both arm instances, without a clear preference for
the left arm. SD features lead to high activations on the left side, but are not
localized on the arm. Our C2G approach correctly identifies the left arm.

robots to perform a wide variety of manipulation related tasks
from limited instruction [2].

One prevalent approach for tackling related tasks in
a zero-shot manner is the fusion of features from web-
trained foundation models into scene representations, such
as point clouds and neural fields [3]. This methodology has
been applied successfully in various tasks, from tabletop
object manipulation [2], [4] to semantic mapping [5]–[8],
showcasing its versatility and effectiveness. Despite these
achievements, a notable limitation persists: the granularity
of the derived features often does not extend beyond the
object-level, as opposed to more local parts (see Fig. 1).

To address this, some methods have adopted the ap-
proach of utilizing extracted activations from these models
as priors [9], [10], thereby anchoring fine-grained semantic
features more effectively. However, this necessitates a con-
siderable number of demonstrations, rendering the method
non-zero-shot. Conversely, fully end-to-end frameworks [11],
[12] do not completely leverage established well-understood
methodologies (e.g., inverse kinematics, scene represen-
tations, etc. ), which makes these models notably data-
intensive, and their decision making process opaque. Even
so, the development of extensive robotics datasets has only
now started [11]–[14], and scaling trajectory collection, for
diverse scenes, object categories, and tasks, to the level of
current large image or text datasets remains challenging.

Recently, diffusion models have become the prevailing
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choice for text-to-image generation [15]–[19]. Similar to
prior vision models [20], there has been growing interest
in utilizing the intermediate features as representations for
downstream vision tasks [21]. In particular, even in the zero-
shot setting, these feature maps have led to state-of-the-
art performance in the task of dense semantic correspon-
dence [22]–[24].

In addressing the aforementioned manipulation challenge,
and drawing inspiration from progress in generative diffusion
models, we frame the precise part manipulation task as a
dense semantic correspondence problem. More specifically,
we develop a multi-view consistent scene representation from
a multi-camera setup. This representation is then integrated
with features derived from a diffusion models’ noising pro-
cess [15], making use of the intermediate diffusion activa-
tions. Using a visually different source image as reference,
we define an interaction location in 2D and localize it in the
target 3D scene, disambiguating between similar instances
of the part type of interest by identifying self-similar part
instances. We validate the efficacy of our method with
experiments in a real-world tabletop scenario with different
object classes. We summarise our contributions as follows:

1) We identify the problem of precise part manipulation in
the presence of visually and geometrically ambiguous
object parts in a generalizable way.

2) We present Click to Grasp (C2G), a modular method
that takes calibrated RGB-D images of a tabletop and
user-defined part instances in diverse source images as
input, and produces gripper poses for interaction. Our
pipeline effectively disambiguates between visually
similar but semantically different concepts (e.g., left
vs right arms).

3) We outline an optimization-based approach for solving
for gripper poses that eliminates the need for manual
demonstrations by solely leveraging the intrinsic ge-
ometry and features of a scene of interest.

II. RELATED WORK

A. Fine-Grained Semantic Object Manipulation

Precise object manipulation is a key component for a
variety of applications. A category of recent works addresses
this problem mainly by incorporating language as a natural
interface between humans and robots, leveraging the latest
advancements from the field of natural language processing.
One recent approach uses Large Language Models (LLMs)
as high-level planners [25], [26] for reasoning via generated
code. However, the lack of connection between such LLMs
and grounded visual perception means that performance
is upper bounded by the vision model’s performance. For
example, interacting with the front-right leg of a chair
requires accurate detection of not only the different legs,
but understanding the concept of the front versus the back
of the chair. Another approach is to use fully end-to-end
models to map visual observations and language instruc-
tions to a discrete action space (i.e., vision-language action
models) [11], [12]. However, such models require hundreds

of thousands of trajectories from real-world demonstrations
for training, and do not to fully leverage well understood
components such as motion planning, etc. An alternative
solution utilizes strong priors from vision foundations models
to learn specific skills [9], [10] and jointly encodes them
with language instructions. However, a large number of task-
specific demonstrations is again required. We argue that it
is not necessarily always straightforward to use language
to describe a precise area of interaction on an object.
Instead, visual annotations can be more descriptive of the
desired area of interaction. Furthermore, we posit that, in the
context of simple grasping tasks, well-established robotics
methodologies for manipulation are effective when compared
to deploying opaque, end-to-end, approaches that can be
cumbersome to train and deploy.

B. Dense Visual Descriptors for Manipulation

Learning robust, dense visual descriptors, that are adapt-
able to varying viewing conditions and are applicable across
diverse instances of object classes has long been integral
to the task of manipulation [27]–[32]. However, the rise
of large, web-trained foundation models, has highlighted
the efficacy of representations derived from self-supervised
models like DINO [20], [33] or vision-language models like
CLIP [34]. The quality of these features can be enhanced by
fusing and combining them from multiple images of a scene
into spatial representations. In F3RM [4], DINO or CLIP
features are distilled into a neural field, with 3D descriptors
obtained via demonstrations by querying an implicit function
in 3D coordinates sampled at the location of interaction.
However, this scheme necessitates dense views and entails
time-consuming re-training when the scene changes. In
D3Fields [2], a dynamic representation is introduced, which
leverages four camera views and four different foundation
models for masking objects [35]–[37] and extracting and
tracking descriptors [33]. The latter is utilized for learn-
ing object dynamics and planning manipulation tasks with
model-predictive control. In our experiments we find that
the features extracted by the models used in the aforemen-
tioned prior work cannot consistently disambiguate between
different object part instances (e.g., telling left part instances
from right ones as in Fig. 1).

C. Diffusion Derived Descriptors

Text-to-image diffusion models [15]–[19] have recently
been shown to be effective at tasks beyond image generation.
Particularly Stable Diffusion (SD) [15], which leverages a
text-conditioned Latent Diffusion Model, has become widely
adopted as a large pre-trained foundation model for diverse
downstream computer vision tasks. Example tasks include
zero-shot classification [38], [39], segmentation [40], [41],
and image editing [21], [42]–[44]. Most relevant to our use
case is the utilization of intermediate U-Net features from SD
as visual descriptors for the task of 2D dense semantic cor-
respondence [22]–[24], [45]. We highlight two key insights
from these approaches. First, although all aforementioned
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Fig. 2. Perception Modules OD , OG : (a) RGB-D images of the tabletop scene and a random source image of the object class are used as input, along
with a single user-defined click, indicating the interaction area (Section III-A). (b) Images are lifted in 3D space by back-projection and interpolation of
RGB values, densities, and features from DINO and SD (Section III-B). (c) DINO and SD features from the source image are extracted and used to localize
instances of the user-defined part, automatically identifying them as positive (same instance type) or negative (different instance type), and extracting visual
descriptors (Section III-C). (d) DINO descriptors localize corresponding parts in the 3D scene, while SD descriptors disambiguate between instances,
resulting in a 3D mask identifying the proposed interaction area (Section III-D).

SD-based methods rely on the denoising (generation) pro-
cess, [23] demonstrated that the noising (inversion) process
actually retains crucial semantic visual information, which
is otherwise lost. Second, evidence of the complementary
nature of SD and DINO features was presented in [22]. In our
work, we integrate findings from [22] and [23], by combining
feature maps from the inverse process of SD with those
from DINO, to create visual descriptors that are capable of
resolving part instances. Nonetheless, a notable constraint
persists in that correspondence between SD features can fail
in cases where the pose of the target and source objects
are very different [46]. We confirm and acknowledge this
limitation in our experiments in the 3D world. Finally,
concurrent to our work, there have been recent attempts
from the vision literature to resolve part instance confusion
in the context of semantic correspondence estimation [46],
[47]. However, unlike those works we do not require any
additional training steps or make strong assumptions about
the intrinsic 3D geometry of the objects we interact with.

III. C2G: CLICK TO GRASP

A. Problem Formulation

We consider a tabletop scene consisting of any instance
of a specific object class. In our experiments, we investigate
single-object scenes. However, our method can be easily
modified to work with multiple objects, by simply integrating
vision-language features, for selecting a specific object to
manipulate, based on its visual attributes (e.g., “the brown
teddy bear”). We assume the scene is observable from N
distinct cameras, each with known extrinsic parameters,
providing RGB images It ∈ RN×H×W×3 and depth maps
Dt ∈ RN×H×W , which we utilize to develop a 3D scene
representation F , as described in Section III-B. Furthermore,
our setup incorporates a source RGB image Is ∈ RH×W×3,
showcasing a different instance from the same object class.
This source instance may exhibit significant visual and geo-
metric differences from those present on the target tabletop
scene. An additional input includes a user-specified 2D
coordinate xs = (u, v) in the pixel space of the source image
Is, pinpointing a precise part for interaction (e.g., the left arm



of a stuffed toy) in two-dimensional space.
Our goal is to create a model O that, for any given

target scene and source image, enables the precise deter-
mination of the transformation T ∈ SE(3) to be applied to
a robotic arm’s end effector. This transformation facilitates
the manipulation of an object in the target scene, aligning
it with the most visually and semantically similar part
specified by the user in the source image. Specifically, our
model T = O(It, Dt|Is, (u, v)) is structured into three main
components, O = (OD,OG ,OT ). OD processes the source
image to produce a descriptor d, capturing the visual and
semantic characteristics of the user-selected point, formalized
as d = OD(Is, (u, v)), which is analyzed in Section III-C. A
grounding module OG addresses the challenge of matching
d with the target scene, identifying a set of coordinates as a
3D area of interaction A, represented as A = OG(d, It, Dt),
as described in Section III-D. Finally, the manipulation
module OT refines the rotational and translational elements
of T, targeting the vicinity of A. This enables the robot to
adeptly engage with the designated object segment, denoted
as T = OT (F ,A,d). Illustrations of the perception modules
OD,OG are provided in Fig. 2, while the manipulation
module OT is detailed in Fig. 3.

B. Scene Representation

To represent the target scene we use the implicit descriptor
fields representation from [2]. This enables the fusing of
RGB-D observations and their corresponding feature maps
into a single, multi-view consistent, and differentiable 3D
representation F(x), where x ∈ R is any 3D point in
space. We preserve the signed distance to the surface s ∈
R as an output of F , and modify it to incorporate two
additional implicit field functions that return not only multi-
view consistent features fDINO ∈ RNDINO that have been
extracted from DINO, but also fSD ∈ RNSD from SD:

s = Fs(x), fSD = FSD
f (x), fDINO = FDINO

f (x). (1)

We extract features from each of the target It and the
source Is RGB images. For DINO, we keep the feature
map from the final layer, following prior arts [2], [4], [22].
For SD, we choose to deploy the inversion process, by
noisying the input images and extracting the intermediate
feature maps from the UNet, similarly to [23]. However,
we only keep the output from the first timestep and the 4th

layer. This choice allows us to maintain a low dimensional
representation, which is descriptive enough for our task, as
it has been visually demonstrated that the feature maps from
the middle layers of the U-Net in SD provide a good balance
between lower level concepts, such as shapes and outlines,
and higher level ones, like texture [22]–[24], [45].

C. Source Image Descriptor

The user-specified coordinates (u, v) in the pixel space of
the source image indicate the specific part of the object class
of interest that is targeted for manipulation in the tabletop
scene. We assume that the source image can be any instance
of the object class, with the only condition that all the

interaction areas of interest are visible. For example, both
arms of the stuffed toy need to be visible to interact with the
right or the left one. We then extract the relevant feature maps
from the source image using both DINO and SD, and denote
them as FDINO ∈ RH′×W ′×NDINO , FSD ∈ RH′′×W ′′×NSD .

Many object categories of interest can contain repeated
parts, e.g., a stuffed toy can have both a left and right
arm. These repeated part instances pose a challenge when
attempting to find a user specified location from the source
image in the target scene. To address this, we first rely
upon DINO’s localization capabilities to identify all instances
of the user defined part in the source image. We compute
the cosine similarity between the normalized FDINO and
FDINO(u, v), and after performing min-max normalization we
select the top decile of values, as visualized in Fig. 2 (c).
We empirically find that this selection step is adequate
for roughly identifying all possible interaction instances.
However, further processing is required to avoid noisy
similarity masks in the source image. Dilation followed
by erosion proves sufficient to rectify this issue, resulting
in the formation of convex hulls. The centroids of which
lie inside all visible areas of interaction and can provide
reliable descriptors. While this work concentrates on the
binary distinction between left and right, the methodology we
propose can be adapted to address more complex scenarios
involving objects with many instances of the same part, such
as the legs of a chair or the handles of different drawers.

We extract descriptors dDINO and dSD from FDINO and FSD
for the coordinates of the identified centroids and assign the
spatially closest to the user defined click as positive (d+

DINO,
d+

SD) and the other(s) as negative (d−
DINO, d−

SD). We empir-
ically find that identifying both the positive and negative
samples is imperative, both for accurately performing part
detection in the scene, but most importantly, for solving
semantics ambiguities, as is explained next.

D. Identifying Target Scene Area of Interaction

The target scene representation and extracted source
image positive and negative descriptors are utilized for
proposing a 3D area of interaction A. Given the implicit
nature of the scene representation, we first convert it into a
voxel grid V , spanning a volume Ht × Wt × Lt over the
tabletop, with voxel size equal to δ. After initializing the
grid, we query F and assign to each voxel a fDINO and a fSD
feature embedding. From this, we define two voxel feature
grids: VDINO and VSD.

Part detection: First, d+
DINO and d−

DINO are utilized for
grounding all instances of the user-defined part in the 3D
scene. We compute cosine similarity between VDINO and the
two descriptors. As shown in Fig. 2 (d-1), both the d+

DINO and
d−

DINO lead to higher activations in all areas of the present
part instances. Given the minuscule disparity between two
similarities, DINO fails to localize a clear candidate area
of interaction. Consequently, we utilize these features for
part detection, increasing the similarity scores in the relevant
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Fig. 3. Manipulation module OT : Given the proposed area of interaction A, random gripper poses are initialised at each coordinate x ∈ A. Then,
collision-free poses are retained and optimized, using Eq. 5. The gripper pose with the lowest final loss score is then sent to the motion planner.

areas, and decreasing it everywhere else, by multiplying the
similarity scores from the two descriptors:

SIMDINO =
d+

DINO · VDINO

∥d+
DINO∥ · ∥VDINO∥

·
d−

DINO · VDINO

∥d−
DINO∥ · ∥VDINO∥

(2)

Finally, we threshold the min-max normalized SIMDINO
scores at θDINO to identify possible areas of interaction.

Part Instance Disambiguation: We then rely upon the SD
features, for the purpose of selecting the most relevant part
instance, from the ones detected with DINO. Again, we
calculate the cosine similarity between the SD descriptors
and VSD, which lead to relatively noisy similarity heatmaps.
As illustrated in Fig. 2 (d-2), the similarity scores are
generally higher at the broader region of the corresponding
user-defined instance, which are however not reliable enough
for instance selection, as relatively high scores exist in all
parts. We find that by adding a contrastive component,
computing the difference between the similarity scores from
d+

SD and d−
SD, respectively, the resulting heatmap becomes

more suitable for instance disambiguation:

SIMSD =
d+

SD · VSD

∥d+
SD∥ · ∥VSD∥

−
d−

SD · VSD

∥d−
SD∥ · ∥VSD∥

(3)

Area of Interaction: Finally, we utilize the resulting simi-
larity scores SIMDINO, SIMSD to propose an interaction area
A in the scene. We multiply per coordinate the min-max
normalized similarity scores of the thresholded SIMDINO and
the min-max normalized SIMDINO similarity:

A′ = max(SIMDINO, θDINO) · SIMSD. (4)

The voxels of A′ that correspond to zero similarity scores
are discarded and the values of the remaining voxels are
min-max normalized. We threshold the final scores, keeping
the voxels that correspond to the top quartile. This set
of coordinates is the proposed area of interaction A, thus
grounding the user defined click from the source image into
the 3D space of the target scene.

E. Gripper Pose Optimization

For the purpose of interacting with an object in the target
scene, we must solve for the transformation T ∈ SE(3)
to be applied on the robot’s end effector to determine its
final 6-DoF pose in the world coordinate system. Here,
SE(3) = {(R, t) |R ∈ SO(3), t ∈ R3}, with rotation matrix
R and translation vector t. Our approach is similar to [4].
However, we do not require any manipulation demonstrations
to optimize the pose. Instead, we rely on the gripper’s and
scene’s geometry to identify a collision free solution.

Given the area of interaction A, we initialize transforms
{T} = {(R, t)} for the robot’s end-effector, by setting as
t the coordinates of the selected voxels and use random
rotation matrices. The center point between the gripper
fingers is then utilized as the mean µ of an elongated
3D Gaussian distribution for sampling a set of M points
Xi, that acts as a sampler of the implicit function at the
predicted area of interaction. We find that elongating the
distribution orthogonally to the axis of movement of the
gripper fingers assists our optimizer to align better with
the object’s geometry. We also generate another point cloud
Xg , which corresponds to the gripper’s geometry, for the
purpose of detecting collisions with the scene. We then
leverage the differentiable nature of the implicit function F
to compute gradients for our optimizer when querying with
the transformed points of Xi and Xg .

Our gripper loss function consists of three components:

L(T;d+
DINO) =− 1

Ms

∑
xi∈TXi

Attractive force︷ ︸︸ ︷
λf

a Lf
a(xi,d

+
DINO) + λg

aLg
a(Xi)

− 1

Mg

∑
xg∈TXg

λrLr(xg)︸ ︷︷ ︸
Repulsive force

+ λregLreg(T)︸ ︷︷ ︸
Regularization term

.

(5)
First, we include two components that act as attraction
forces. Lf

a(xi,d
+
DINO) pulls the TXi points closer to areas

that maximize the cosine similarity between the DINO scene
features fDINO and the descriptor d+

DINO, while Lg
a pulls the

same points close to the surface of the scene, leveraging
the signed distance output of F . We found that only DINO
features are enough for our optimizer for not diverging the
gripper from the proposed area of interaction. Second, we
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Fig. 4. Visualization of results for three stuffed toys and three shoes manipulation experiments: (1) Source images along with the detected (u, v)
coordinates of the positive and negative part instances. (2) Reconstructed 3D scene. (3) Part similarity heatmap. (4) Part instance disambiguation. (5)
Identifying the area of interaction versus the most similar part instance. (6) Optimized gripper pose. (7) Real-world object manipulation.

include a repulsive force guided by the gripper geometry
TXg , pushing its point cloud away from the scene, so that
collisions are avoided. The constituent losses are defined as:

Lf
a(x,d) =

Ff (x) · d
∥Ff (x)∥ · ∥d∥

,Lr(x) = −Lg
a(x) = Fs(x) (6)

The equilibrium of these forces is a collision-free grip-
per pose that can interact successfully with the target 3D
identified location. We also add a regularizer term:

Lreg(T) = ∥R∥2 + ∥t∥2, (7)

which encourages the values of the rotation and translation
matrices to remain low, thus further stabilizing the optimiza-

tion. We repeat this optimization for all collision free poses
and select the one with the lowest final cost.

IV. EXPERIMENTS
A. Experiment Setup

We setup a tabletop scene, which is observed by four
ZED2i stereo cameras, the extrinsics of which were cali-
brated in the world frame of a Franka Panda arm. We use
DINOv2 ViT-B/14 (which we refer to as DINO) and Stable
Diffusion v1-5 (SD) as our visual feature extractors. We
constrain the target object’s pose so that it does not vary
greatly from the object in the source image for at least two
camera views from which we extract the SD features. This
choice is important as feature extraction in SD is not robust
to large global transformations [46].



We focus our experiments on successfully manipulating
stuffed toys and shoes. These items are good candidates for
evaluation because they contain visual and geometric sym-
metries which necessitates the need for our C2G approach
but at the same time can be manipulated in a tabletop setting.
Traditional used object categories in semantic correspon-
dence evaluation (e.g., vehicles, animals, or furniture) are
not valid for grasping experiments.

A simple UI was also developed to streamline the interac-
tion. Once a target object is positioned on the tabletop, the
user is prompted with a corresponding source image of the
same object class. We used three distinct object instances
for both the shoes and the stuffed toys class, and three web
source images for each. We assessed the ability of a model
to generate successful gripper poses for each part instance
within the respective classes. In Section IV-B we conducted
comparisons against SD and DINO alone, evaluating the
accuracy of the proposed gripper poses offline using pre-
recorded data. Each model underwent 36 gripper pose pre-
diction experiments, resulting in a total of 108 evaluations.
In Section IV-C we replicated the 36 C2G experiments in a
real-world setting using a real robot arm to inspect its ability
to correctly pick an object.

B. Instance Localization Evaluation

First, we compare the ability of C2G to generate plausible
gripper poses for grasping user-defined part instance against
using only DINO or SD features offline. For both VDINO and
VSD, we select as area of interaction A the set of points
that has a cosine similarity score with the corresponding
descriptors d+

DINO, d+
SD above 0.85, respectively. For all three

cases, we feed the proposed A to the optimizer. A pose
proposal is marked as successful if the correct instance part
lies between the gripper fingers after the pose optimization.
Results are summarized in Table I.

We observe that C2G is the most accurate in generating
plausible poses for interacting with the user-defined part
instance. Using only DINO features in most cases led to
a gripper pose that would grasp the object from the correct
part (i.e., the arm of a stuffed toy or the lip of a shoe’s
opening), however, there was no clear preference towards
the correct part instance (i.e., left or right), which is why
the success rate is close to 50%. SD features were always
successful in finding a pose in which the gripper would
interact with approximately the correct side of the object.
However, in many cases the gripper would not interact with
the precise part of the object. We found that this issue
was most noticeable in the stuffed toys, with the optimized
pose leading to interactions in the leg and ear areas. We
observed a significant drop in performance when using the
source image with the pink stuffed toy, where 5/6 times
the gripper pose was closest to the ear of the toy in the
scene, This indicates that the generalization capabilities of
SD features are poorer. Nevertheless, SD features led to
surprisingly better performance in the case of the shoe class,
which we attribute to the fact that the two instances are
spatially separated by empty space. In comparison, our C2G

TABLE I
OFFLINE INSTANCE LOCALIZATION RESULTS

Model Stuffed Toys ↑ Shoes ↑ Total ↑
DINO 6/18 9/18 15/36

SD 8/18 15/18 23/36
C2G (ours) 17/18 18/18 35/36

TABLE II
REAL-WORLD GRASPING RESULTS

Stuffed Toys ↑ Shoes ↑ Per Instance ↑
Left 9/9 8/9 17/18

Right 8/9 8/9 16/18
Per Object 17/18 15/18 33/36

generated gripper poses were correctly able to identify both
the correct part and part instance, failing only once.

C. Grasping Evaluation

Finally we implement C2G in a real-world scenario to
assess its capability to effectively grasp objects from the
intended part instance. After optimizing the gripper’s pose
within the proposed interaction area, we utilized inverse kine-
matics to map out a manipulation trajectory, commencing
from the neutral position of the robot arm. A successful
grasp is defined as one where the correct part instance is
picked up, and the grasp is robust enough such that the
object does not fall when lifted. We summarize our results
in Table II. C2G failed to perform a successful grasp in only
three out of the 36 scenarios. These failures are attributed
to various factors: one resulted from slipping, another from
an inaccurate proposal of the interaction area, and the third
from inadequate pose prediction.

V. CONCLUSIONS

We presented C2G, a precise manipulation approach for
objects exhibiting semantic ambiguities. C2G uses a user-
defined annotation in the form of a single click from a
source image to generate gripper poses in the real-world.
Our approach builds on prior works that fuse features from
web-trained foundation models. However, C2G distinguishes
among similar instances of parts within tabletop scenarios.
This is achieved by recognizing part correspondences within
a source image of the same object category as the target
scene and performing disambiguation of the part instances.
We demonstrated that simply fusing features from foundation
models is insufficient for precise grasping in real-world table-
top scenes, whereas our C2G approach led to 92% grasping
success. We identify two limitations of our approach. First,
the target object’s pose should not vary greatly from the
one depicted in the source image, an issue that has been
documented in concurrent work [46]. Second, we currently
do not utilize the language integration capabilities of SD.
We acknowledge both of the above limitations as future
research directions. Our C2G approach is potentially well
suited for industrial environments since a single annotation
from a generic 2D source image is sufficient to precisely
manipulate diverse target object instances of the same class.
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