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Abstract

The use of pre-trained visual representations (PVRs) in
visuo-motor robot learning offers an alternative to training
encoders from scratch but we discover that it faces chal-
lenges such as temporal entanglement and poor generali-
sation to minor scene changes. These issues hinder per-
formance in tasks requiring temporal awareness and scene
robustness. We address these limitations by: (1) augment-
ing PVR features with temporal perception and task comple-
tion signals to disentangle them over time, and (2) introduc-
ing a module that selectively attends to task-relevant local
features, improving robustness in out-of-distribution scenes.
Our approach, particularly effective for PVRs trained with
masking objectives, shows significant performance gains.
This work summarises findings from Tsagkas et al. [32].

1. Temporal Entanglement
Problem Statement. Policies using frozen PVR features
often violate the Markov assumption, as single-frame ob-
servations may lack sufficient information to determine
the correct action. As shown in Fig. 1, PVR features
from a pick-and-place trajectory exhibit temporal entangle-
ment: (i) frames during static grasps cluster due to minimal
pixel changes, and (ii) ascent/descent motions yield near-
identical features, differing only slightly in regions affected
by the cube’s displacement. This ambiguity hampers learn-
ing a consistent mapping from observations to actions.
Proposed Solution. To resolve it, we map each
timestep to a temporal encoding (TE) and append
it to the corresponding observation, using γ(t) =(
sin

(
2kπt
sk

)
, cos

(
2kπt
sk

))T−1

k=0
which we concatenate to

the policy input. This simple augmentation injects temporal
structure, helping disambiguate visually similar states and
improve policy learning.
Results. Table 3 shows that feature disentanglement via
TE significantly boosts performance, particularly for PVRs
with temporal training objectives (i.e., VIP, VFS, R3M).
This suggests that potentially there is room for improve-

Figure 1. PCA of R3M [18] tokens from an expert demonstra-
tion in Bin Picking. Frame colours align with trajectory stages,
suggesting feature entanglement during the gripper descent and
ascent, and during the gripper stop phase.

ment for encoding temporal structure in PVRs.
Are Video-PVR Better Alternatives? A natural question
is whether PVRs trained on video data inherently mitigate
this issue. We evaluate three widely used video-PVRs
on the same tasks and find that TE continues to improve
success rates. Moreover, a negative correlation emerges
between performance and the number of input frames (Ta-
ble 1). This counter-intuitive result aligns with the findings
of Chi et al. [9], regarding the observation horizon’s length.

ViT-B/16 TimeSformer [3] VideoMAE [29] ViViT [1]

Number of input frames 1 8 16 32
Average inference time ≈ 0.025s ≈ 0.145s ≈ 0.265s ≈ 0.550s

Video-PVR – 56.9% 45.5% 18.8%
Video-PVR + TE – 62.4% 44.8% 24.9%

Table 1. Policy success rate across 10 tasks for Video-PVRs.

Peg Insert Bin Picking Disassemble Coffee Pull Average

CT 42% 80% 54% 96% 68.0%
CT + TE 62% 90% 93% 100% 86.3%

Table 2. Multitask results for Causal Transformer w/ and w/o TE.
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DINOv2 [19] DINOv1 [6] MAE [12] CLIP [21] ViT [10] iBot [36] VC1 [17] MoCov2 [7] SWAV [5] VIP [16] DenseCL [33] R3M [18] VFS [34] VICRegL [2]

− 52.7% 51.2% 40.9% 48.6% 48.7% 52.6% 48.6% 65.3% 67.4% 50.6% 60.1% 67.5% 66.3% 65.1%
▽ 46.9% 57.0% 52.8% 48.9% 49.2% 55.7% 52.9% 65.3% 66.8% 54.7% 57.6% 71.4% 69.9% 67.7%
⋄ 58.4% 61.9% 56.0% 56.4% 58.5% 54.2% 52.8% 71.2% 68.5% 65.1% 63.3% 75.3% 74.4% 70.9%

Table 3. Average success rate across 10 tasks and 5 seeds. Results are reported without any temporal augmentation (−), with the FLARE
method (▽) and with TE of the timestep (⋄). Colour indicates first , second and third best performing PVR with TE.

DINOv2 [19] DINOv1 [6] MAE [12] CLIP [21] ViT [10] iBot [36] VC1 [17] MoCov2 [7] SWAV [5] VIP [16] DenseCL [33] R3M [18] VFS [34] VICRegL [2]

◦ 27.1% 18.6% 15.2% 22.4% 17.8% 17.6% 13.7% 20.4% 21.0% 10.6% 18.4% 4.6% 8.5% 22.6%
∗ 41.2% 25.3% 39.6% 20.2% 16.7% 32.4% 41.4% 27.3% 30.5% 31.5% 28.8% 12.8% 17.6% 31.9%

Table 4. Average success rate across 10 tasks, 5 seeds. Results are reported in visually perturbed scenes, for PVR+TE (◦) and for
PVR+TE+AFA (∗). Colour indicates first , second , third and fourth best performing PVR with AFA.

Does TE Improve SoTA Methods? We also deploy TE
along with SoTA approaches that implicitly model tempo-
ral structure. We use a Causal Transformer (CT) with con-
text length and action chunking equal to 12. Note that we
use rotary embeddings [28] in the CT input which encode
the relevant position in the model’s input, whereas our TE
represent the position in the rollout. We studied a multitask
learning scenario to emphasise that TE disentangles adja-
cent tokens, rather than encode absolute timesteps. Results
in Table 2 validate the generality of TE.

2. Robustness Under Visual Perturbations

Problem Statement. Training policies using global fea-
tures from PVRs (i.e., the CLS token in ViTs or average
pooled features in CNNs) can lead to overfitting to visually
dominant but task-irrelevant scene attributes (e.g., back-
ground textures). This dilutes the policy network’s abil-
ity to focus on features critical for decision-making. Prior
work suggests that only specific image regions contribute
meaningfully to task success [8], and recent findings in PVR
distillation [25] indicate that local information is especially
valuable in robot learning, but this remains underexplored.
Proposed Solution. We introduce Attentive Feature Ag-
gregation (AFA), a data-driven module built upon the atten-
tive probing framework [8]. AFA appends a cross-attention
layer with a trainable query token q to the frozen PVR,
enabling selective aggregation of local features (i.e., patch
tokens in ViTs or channel-wise features in CNNs). The
query attends to relevant regions via dot-product attention:
Attention(q, F ) = softmax

(
q·(F ·WK)⊤√

dk

)
F · WV , where

gradients update the query and projection weights (WK ,
WV ), allowing the model to emphasize policy-relevant fea-
tures while ignoring distractors. Multi-head attention en-
ables focus across diverse feature subspaces.
Results. We train policies with and without AFA and eval-
uate them in scenes under visual perturbations, where we
change either the tabletop texture with vibrant patterns, or
change the position, brightness and intensity of the light
source. Table 4 summarises these results and indicates that
adding a module that learns to attend to task-relevant infor-

mation increases robustness out-of-domain (OoD). The four
top performing PVRs (VC-1 [17], DINOv1 [6], MAE [12]
and iBOT [36]) have all been trained with Masked-Image
Modelling (MIM), which reflects our original motivation
from attentive probing, originally designed for evaluating
MIM-trained models fairly.
The average in-domain (ID) performance increases slightly
from 63.1% to 66.4% with AFA. This modest gain, com-
pared to AFA’s larger improvements in perturbed scenes,
suggests it does not learn a new task-specific latent space.
Instead, it refines the use of the existing one, by learning
to leverage task-relevant information while discarding ele-
ments that are irrelevant to the policy.
Ablating the Pooling Mechanism. Pooling the feature in-
put stream before the policy network is not novel in robot
learning. Usually, however, it serves the role of compress-
ing the input stream’s length to increase the action inference
speed. In this direction, TokenLearner [23] was used in RT-
1 [4] and Spatial SoftMax in [11] and [9]. We compare AFA
under visual perturbations against these methods (Table 5)
and find that AFA outperforms them by more than 20%.

Spatial SoftMax TokenLearner AFA

ID 67.2% 22.8% 59.2%
OoD 13.1% 19.4% 41.5%

Table 5. OoD comparison of Pooling Methods on VC-1.

3. Conclusion
PVRs have proven instrumental in downstream robotics
tasks, ranging from encoding spatial-representations [24,
26, 30] to affordance learning [15] and precise zero-shot
manipulation [31]. Nevertheless, their deployment in policy
learning is still in its infancy [13, 14, 17, 18, 20, 22]. In this
work, we discovered two important limitations in the way
features from PVRs are utilised in imitation learning and
proposed effective solutions to patch them. We conducted
experiments both in simulation, in the MetaWorld [35] en-
vironment, and the real world. Our methods are agnostic to
the policy architecture and can easily be deployed to popu-
lar models (e.g., Chi et al. [9] and Sochopoulos et al. [27]).
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