

THE UNIVERSITY

of EDINBURGH

VL-Fields: Towards Language-Grounded Neural Implicit Spatial Representations

EDINBURGH CENTRE FOR ROBOTICS Nikolaos Tsagkas, Oisin Mac Aodha, Chris Xiaoxuan Lu

{n.tsagkas, oisin.macaodha, xiaoxuan.lu}@ed.ac.uk

What is VL-Fields?

Research Question: How to ground vision-language embeddings into spatial representations, for performing semantic segmentation?

Trained w/o prior knowledge of object classes:

Jointly encodes geometry & VL-features:

Continuous representation with plausible predictions of unobserved regions:

Training Pipeline

Hypothesis: Encoding the geometry of the scene in the Neural-Field will lead to the fusing of the language features to the shapes of the objects, leading to higher quality semantic maps compared to CLIP-Fields.

Qualitative & Quantitative Evaluation

Semantic Segmentation

Open-Vocabulary Queries

Open-vocabulary language-based queries in 3D space: "vacuum the rug", "clean the table", "pick up the plant", "dust the blinds". The colors indicate the areas in the encoded 3D space that correspond to each command.

Limitations

Ground Truth

LSeg

CLIP-Fields

VL-Fields (ours)

	mloU				
	room_0	room_1	room_2	office_0	office_1
LSeg	0.603	0.643	0.771	0.755	0.759
CLIP-Fields	0.544	0.640	0.748	0.718	0.678
VL-Fields	0.629	0.657	0.821	0.768	0.761

Smaller objects are fused semantically with larger object

LSeg loses CLIP's ability to identify long-tail objects